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APPLICABILITY OF THE CONTINUUM-SHELL THEORIES 

TO THE MECHANICS OF CARBON NANOTUBES 

 

V. M. HARIK*, T. S. GATES† and M. P. NEMETH‡ 

 

Abstract. Validity of the assumptions relating the applicability of continuum shell theories to the global 

mechanical behavior of carbon nanotubes is examined.  The present study focuses on providing a basis that can be 

used to qualitatively assess the appropriateness of continuum-shell models for nanotubes. To address the effect of 

nanotube structure on their deformation, all nanotube geometries are divided into four major classes that require 

distinct models.  Criteria for the applicability of continuum models are presented.  The key parameters that control 

the buckling strains and deformation modes of these classes of nanotubes are determined. In an analogy with 

continuum mechanics, mechanical laws of geometric similitude are presented. A parametric map is constructed for a 

variety of nanotube geometries as a guide for the applicability of different models.  The continuum assumptions 

made in representing a nanotube as a homogeneous thin shell are analyzed to identify possible limitations of 

applying shell theories and using their bifurcation-buckling equations at the nano-scale.   

 

Key words: carbon nanotubes, mechanical behavior, elasticity, buckling modes, scaling laws 

 

Subject classification. Computational Materials Science 

 

1. Introduction. Single-walled carbon nanotubes (NTs) are hollow cylindrical, shell-like macromolecules that 

are composed of carbon atoms arranged in periodic hexagonal cells [1].  Recent studies [1-6] indicate that these 

structures have great promise for providing superior mechanical properties such as stiffness approaching 1.5 TPa 

and strength approaching 100 GPa, with a density of about 1.3 g/cm3.  However, because of their nanometer size, 

direct measurement of these NT properties has been found to be extremely difficult. A review of the recent literature 

shows that, to date, mechanical deformations of NTs have been examined via experimental characterization [1], 

while predicted properties have been determined by using ab initio (i.e., atomistic [2, 4]) methods or molecular 

dynamics (MD) simulations [3, 6]. To utilize both measured and calculated properties in the design of nanometer 

scale sensors and material systems with sub-micron inclusions, a full in-depth understanding of mechanical behavior 

of carbon NTs is required. 

Representing new nanostructured materials with equivalent-continuum models also appears to be a viable 

approach to developing a means to describe their mechanical behavior.  However, the applicability of any 
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continuum model should be well defined.  Toward that purpose, this study addresses the question: “Can continuum-

mechanics models of NT behavior be used to determine their global response and, if so, what are the limitations?” 

This question arises naturally from the fact that NTs are cylindrical, lattice-like molecular structures and equivalent-

continuum models [3, 7, 8-10] have been used recently to estimate global properties, such as shell stiffness [3, 7] 

and an equivalent thickness of the graphene lattice [10].  Meanwhile, it has also been demonstrated that representing 

a NT as a continuum shell implicitly imposes certain restrictions on the structural features of NTs.  The assumption 

of a continuum cross-sectional area imposes certain structural and size limitations on nanostructures [5, 8], while the 

concept of shell stiffness may have to be re-defined as an intrinsic material constant without the use of NT thickness 

[7] when a classical shell model is used. 

The global mechanical behavior of the carbon lattice can be also analyzed by representing the discrete 

molecular structure with an equivalent truss model and then as a homogeneous equivalent-continuum [10].  This 

representation is accomplished by exploiting the periodicity of the graphene sheet and establishing a correspondence 

between local quantities, such as the bond strength, with global properties, such as elastic energy.  Such approach 

relies on equating the energies of the two corresponding systems.  This method of achieving an equivalent 

continuum representation has been applied successfully to structural mechanics problems in the past for space 

applications, where vibration and buckling modes of reticulated, large-area lattice-structures have been modeled 

with classical and higher-order plate theories [11].  In some cases, local details were incorporated into high-order 

global structural theories through the use of micropolar-continuum models [12].  However, the meaningfulness of all 

of these continuum models depends on several basic assumptions about the relative wavelengths of the global 

structural deformations as compared to the characteristic dimensions of local structural features.  In the context of 

NTs, the equivalence of the total energy of a molecular lattice with the elastic strain energy of an equivalent 

reticulated structure and with that of a continuum plate [10] or shell, and similarities in their kinematics appear to be 

the key issues. 

To obtain meaningful values for the global mechanical properties of NTs, whose calculated values are based 

upon a structural theory, the applicability of the continuum model upon which the structural theory is based must be 

well defined at the nanometer scale and well understood.  Toward that goal, one objective of the present study is to 

examine issues that typically arise in continuum modeling of discrete systems and continuum representation of NTs.  

Particular emphasis is placed on interpreting the limitations that are imposed on the continuum model by the 

underlying assumptions.  Other objectives are to identify fundamental parameters that can be used to qualitatively 

identify limitations of continuum models and to provide a means for classifying nanotubes.   

Continuum shell theories are of primary interest in the present study, and, thus, specific comments about the 

limitations of using shell buckling as a means for deducing mechanical properties are presented. Motivation for 

accomplishing these objectives stems, to a large extent, from mechanical problems associated with the deformation 

of NT-based sensors and scanning probes (e.g., atomic force microscope tips [13, 14]) that are used for material 

characterization.  These mechanical problems and related issues include: 1) the ability of a given continuum model 

to describe adequately the deformation of molecular lattice-type structures, 2) how a NT is supported and how the 

load is introduced, 3) the effects of structural imperfections and deviations in cylindrical geometry, and 4) the 

accuracy of recorded measurements.  For example, the introduction of mechanical loads into a NT-based probe may 

be affected significantly by the local graphene structure of the NT.   
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To accomplish the objectives of the present study, the structure and geometry of NTs are described first.  Then, 

several issues about continuum modeling of NTs are presented and examined in detail.  Next, four major classes of 

NTs that can be analyzed with equivalent-continuum models, under certain restrictions on the size of a NT and its 

strains, are identified. These classes include thin and thick NT shells, long NTs and NT beams.  The key parameters 

that fully characterize the global behavior of NTs and scaling laws for NT buckling are derived via the scaling 

analysis of NT deformation and its structure.  A parametric map for the four classes of nanotubes is constructed that 

can be used to link NT behavior to specific equivalent-continuum models, that can be used for data reduction in 

characterization [13, 14] and MD simulations [3].  Lastly, limitations of using a shell representation for NTs and 

classical shell theories to characterize NT global behavior are discussed and pitfalls are identified.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.  Schematic of a carbon lattice sheet composed of carbon atoms in a periodic hexagonal arrangement. 

 

2. Continuum modeling issues at nanometer scale. 

 

2.1. Nanotube structure. A carbon NT is composed of a cylindrical lattice-like sheet of carbon atoms.  In the 

carbon sheet (Fig. 1), the adjacent carbon atoms are separated by the distance of about 0.14 nm, which is the length 

of the carbon-carbon/C-C bond, lc-c.  A NT consists of many hexagonal carbon rings that have a width, a, of about 

0.246 nm [1].  These carbon rings are the structural cells in a NT.  Different orientation of the carbon rings or cells 

determine their chirality and result in distinct NT structures (e.g., the “arm-chair” or “zig-zag” NTs).  Current 

processing technologies produce nanotubes with wide variations in length, 1 nm < LNT < 10 µm, and radius, 0.2 nm < 

RNT < 10 nm. Since the ring width, a, is one of the smallest periodic elements in the NT lattice, it can be identified as 

the characteristic dimension associated with the local structure of a NT.   
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2.2. Continuum modeling of lattice-like structures.  To address the shell-like deformation of NTs, the 

nanometer-scale structural features have to be properly accounted for in an equivalent-continuum model.  In this 

section, some aspects of a shell-like representation of NTs are discussed to illustrate the origin and length-scale 

limitations of continuum mechanics assumptions. A careful description of familiar concepts is needed when they are 

applied at the nanometer-scale level.  

In continuum mechanics, the material particles that comprise a deforming shell are contained within top and 

bottom bounding surfaces and edge faces.  The middle surface of the shell is often used as the reference surface and 

all of the surfaces are assumed to be smooth. This simplified representation is motivated by the fact that a fully 

three-dimensional representation of the material body is not amenable to simplified solutions that are needed for 

practical engineering analysis and design studies. This two-dimensional, simplified representation of the material 

body is based upon the fact that two of its characteristic length dimensions are substantially larger than its through-

the-thickness dimension.  Moreover, the characteristic through-the-thickness dimension is presumed to be 

substantially larger than the characteristic dimension of the local structural details such as the C-C bond length, lC-C.  

For carbon NTs, the thickness-to-bond-length ratio, hNT/lC-C, is not a large number, which points out the importance 

of molecular structure for NT behavior. 

The NT shell-reference surface is a mathematical surface that connects all of the carbon atoms and provides a 

basic equivalent-continuum representation of a NT-shell without specifying the value of NT thickness, hNT.  It is 

difficult to define accurately the thickness of a NT due to the discrete nature of NT structure and, thus, the effective 

NT thickness, hNT, can only be estimated by using various assumptions [3, 7, 8, 10].  This point is important because 

NT thickness is a key geometric parameter that is needed to characterize the range of NT structures that can be 

analyzed with different continuum shell theories.  Even in the simplest continuum models, the global bending 

stiffness of a shell is proportional to the cube of the shell thickness.  In addition, the thickness-to-radius ratio is 

known to be important in the formulation of shell theories [15, 16].   

Nanometer-scale effects may introduce corrections to NT geometry such as: 1) variations in the estimates of the 

effective thickness of NTs, which influence the value of the thickness-to-radius ratio hNT/RNT, 2) the NT radius, RNT, is 

uniquely defined only when the aforementioned reference shell-surface is used, and 3) the value of NT length, LNT, is 

subject to the end-cap effects that have the length-scale on the order of NT radius or a/2 for the NTs with open ends 

(Fig 2).  These ambiguities in NT geometric parameters and the NT open-lattice structure characterize the 

“effective” geometries of NTs that are marked by dotted lines in Fig. 2.  The issue of effective NT thickness is 

related to the issues regarding the use of other concepts such as a volume and a volume fraction at the nanometer 

scale.  A difference in the definitions of these concepts may lead to some variations in the numerical results. 

 

2.3 Applicability criteria for continuum models.  At the nanometer scale, the applicability of continuum 

models to NT behavior can be qualitatively evaluated by examining the validity of continuum-based assumptions 

and identifying model restrictions related to geometric parameters of NT structure and its deformation.  Before a 

continuum model is used, three basic criteria have to be satisfied.  First, a homogenization criterion, such as LNT/a > 

10, for property averaging should be established.  This criterion provides a measure of relevance of the local lattice 

to the global NT structure.  Second, linearity of elastic strains should be enforced, i.e., the axial strain, εx, must be 



 5 

small compared to unity.  For NT shells, this range of small strains is limited from above by 2-5% [3, 6]. The strain 

value under bending or compressive loading can be bounded by the maximum-strain criterion: 

 

εx ≈ (LNTo – LNT)/LNTo << 1,                        (1) 

 

where LNTo and LNT are the original or non-deformed length of a NT and the deformed length, respectively. Moreover, 

all strains should smaller than the lowest estimate of the NT thickness.  The third basic criterion is that geometrically 

linear models are restricted to small deflections of long NT structures.   

 

3. Classification of nanotubes and key parameters.  Separation of NTs into different classes is, to a large 

extent, a necessary step in developing appropriate models for various molecular structures.  This classification is 

usually done by first identifying the key parameters that relate the local structural features to the global response. 

These geometric parameters may be used to capture the influence of NT structure on the degree of applicability of 

continuum shell models and the associated ranges of validity. After the key geometric parameters of NT structure 

are established, dimensional analysis is used to identify a few non-dimensional parameter-groups that fully 

characterize the dominant mechanical properties of the different classes of NTs. 

Following classical shell theory [15, 16], the NT thickness-to-radius ratio restriction hNT/RNT < 1/20 can be used 

to loosely determine if a NT shell is thin and thus whether transverse shear can be neglected in the continuum shell 

model.  Consideration of the length-to-radius restriction LNT/RNT >> 1 will further define high aspect ratio NTs that 

have unique deformation modes.  These restrictions can be used to group NTs into four classes; that is thin NT shells 

(class Ia), thick NT shells (class Ib), long NTs or high aspect ratio NTs (class II), and thin beam-like NTs or NT 

beams (class III) such that the normalized radius is RNT/a ≈ 1, where a is the side length of a carbon ring or cell (Fig. 

2).  This classification of NTs separates NT structures into groups that have similar global structural behavior, 

overall material properties and deformation modes. 

The NT shell classes include the thick shells (class Ib) defined by the ratio hNT/RNT > 1/20, as the NT radius 

decreases to RNT/a ≈ 2.  As soon as NT length, LNT, becomes large so that the length-to-radius ratio LNT/RNT is well 

above 10, NTs acquire a high aspect ratio (class II) and the associated structural properties (e.g., low bending 

stiffness), but still behave like shells.  Here, the value 10 is used to show at least an order of magnitude difference in 

the separation of the transverse and longitudinal dimensions or scales in NT structures.  Such separation is based on 

inequalities and, thus, is not precise, of course.  Note that the NT beams (class III) often also have high aspect ratios.  

The unique feature of NT beams is that the high curvature and the van der Waals forces inside of a NT become 

significant as far as structural properties and deformation are concerned [4, 8, 9]. As a result, the effective NT 

thickness is higher for NT beams.  This increase in the effective NT thickness increases the value of the ratio, 

hNT/RNT, for shells or the ratio, hNT/lC-C, for the carbon lattice.  The thin-shell models, which are based on classical shell 

theories [15, 16], are applicable only to two of the NT classes (i.e., class Ia and class II) with certain restrictions on 

NT size and the magnitude of its strains.  

The name of each NT class is a reflection of the structural properties of NTs.  That is, NT shells (class Ia and 

Ib) behave like either thin shells or thick shells (i.e., hollow cylinders).  The long NTs of class II have a structural 

response that is similar to hollow columns regardless of the values of the NT radius.  The NT beams deform like 
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either long beams or short beams (i.e., solid cylinders).  The name of each NT class also indicates which models 

may be applicable to characterize the NT global behavior.  Variations in the loading conditions may introduce only 

minor refinements into applicability of these models. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.  Schematics of the “effective” NT geometries (dotted lines) for the four classes of NTs: thin and thick NT 

shells, long NTs or high aspect ratio NTs, and NT beams. 

 

4. Effects of nanotube structure on deformation.  The categorizing of NTs into different classes indicates that 

NT structure may have significant influence on their mechanical response (i.e., their deformation modes for the 

shell-like and beam-like geometries).  The mechanical problems associated with the deformation of NT-based 

sensors and scanning probes [11, 12] also require selection of appropriate models for various NT geometries.  For 

NT probes, a typical device involves a NT attached to a sharp tip of a cantilever beam, which is brought into close 

proximity or contact with the material tested and subjected to compression or bending.  Here, deformation of NT 

shells is examined to illustrate the effect of NT structural parameters on their global response under compressive 

loadings. 

Beam-like buckling modes of NTs subjected to axial compression depend on their geometry.  Variations in the 

geometric characteristics of NT structure may also require examination of the shell-like buckling modes.  This 

section shows how the applicability criteria for continuum models and the NT classes affect the analysis of NT 

buckling.  This analysis is carried out for the three NT classes: Ia, Ib and II.  Dimensional analysis of the shell 

buckling process was conducted, like that in Refs. [8, 9].  The analysis clearly identified the key geometric 

parameters that significantly affect the NT buckling behavior, i.e., the thickness-to-radius ratio, hNT/RNT, and the 

LNT 
dNT 

Class Ia/Ib 

Class II Class III 

LNT/RNT >> 1 

hNT/RNT > 1/20 

RNT/a1 ≈ 1 

hNT/RNT << 1 

Lmin 
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aspect ratio, LNT/RNT.  The following sections examine the effects of NT thickness, hNT, and NT length, LNT, on NT 

buckling predictions. 

 

4.1. Effects of thickness estimates on nanotube buckling.  For NT shells in class I, a linear analysis of shell 

buckling can be carried out with a modification of the classical formula [3, 13] for continuum shells.  However, the 

range of NT structural parameters should be properly limited before such a model is used.  First, according to the 

proposed homogenization criteria (LNT/a > 10), the range of values for NT length should be limited from below by 

the minimum length, Lmin.  This criterion ensures unique averaging of NT material properties.  Second, the range of 

values for NT radius depends on the choice of thin or thick NT shells.  That is, the buckling strain of the thin NT 

shells can be approximated by the following modified formula 

 

       
2

1ε ,
3(1 ν )

NT
cr

NT

h
R

 
=  

−  
                    (2) 

 

only when the inequality hNT/RNT < 1/20 is satisfied and NTs have moderate aspect ratios.  Here, ν is Poisson’s ratio.  

The original buckling formula [15] is not based on the non-dimensional quantity, hNT/RNT. It also includes the 

moment of inertia, INT.  The later parameter was shown to be a dependent quantity in the dimensional analysis [8, 9].  

At the nanometer scale, the mechanical strains are easier to define than the stresses, as indicated by the Eq. (2).  In 

contrast to stresses, the global NT strains can be measured directly. The approximate nature of this equation is not 

only because of the assumption of linearity, but also because of the known sensitivity of shell buckling to small 

variations in thickness, cylindrical geometry and other nonlinear geometric effects [15, 16].  A formula similar to 

Eq. (2) without a non-dimensional ratio has been used in MD simulations but without any restrictions or analysis 

[3]. 

The buckling predictions of Eq. (2) strongly depend on the NT thickness estimates, which have been bounded 

between the MD prediction of 0.066 nm, which is based on a shell analogy [3], and the value of graphite interlayer 

spacing, t, of about 0.34 nm.  The magnitude of interlayer spacing is affected by the van der Waals forces and 

applied pressure [1].  An intermediate estimate of 0.072 nm is based on a bond-thickness estimate [8], while an 

equivalent-truss model [10] for the planar carbon lattice-sheets yields an estimate of 0.28 nm.  The effect of such 

variations in thickness estimates on the buckling behavior of NT shells is illustrated in Fig. 3.  Note that the criterion 

for the maximum strains (2-5%) imposes an upper bound or a cut-off boundary for the curves in Fig. 3 that represent 

different estimates of NT thickness and span a range of values of the NT radius. 

Equation (2) provides a structure-property relationship that connects the critical buckling strain to the structural 

characteristics of NTs (i.e., hNT and RNT), for the aspect ratio, LNT/RNT, that is not large.  Note that Eq. (2) involves only 

one non-dimensional geometric quantity, hNT/RNT, which is identified as a key parameter that controls the NT 

buckling behavior. Poisson’s ratio is a material constant for the class of NT shells. Therefore, NTs having the same 

value of the non-dimensional ratio hNT/RNT must have identical critical strain and buckling modes even if the 

individual parameters (i.e., hNT and RNT) are different.  The last statement constitutes a mechanical law of geometric 

similitude for the class Ia of NT shells that have no imperfections.  It is analogous to the laws of similitude in 
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continuum mechanics.  Note that in classical mechanics, similitude is usually based on the analysis of differential 

equations as opposed to a parameter-group analysis. 
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Figure 3.  Dependence of the critical buckling strain of carbon NTs on their radius, RNT (nm), for various estimates 

of the effective NT thickness, hNT,. 

 

4.2. High aspect-ratio effects on nanotube buckling.  The length of nanotubes affects their buckling strain 

and the associated deformation modes.  For the class II of NTs with high aspect ratio, LNT/RNT, the critical axial strain, 

εcr, is proportional to the NT end-displacement and depends on the NT half-perimeter, πRNT, normalized by the NT 

length, LNT:  

               
NTo

cr

NT

NT
cr L

L
L
R ∆

≈







=

2

2
1 π

ε                         (3) 

if LNT/RNT > 10, or better yet, if LNT/dNT > 10, where dNT is the diameter of a NT.  Here, ∆Lcr is the critical end-

displacement, ∆L = LNTo – LNT.  The difference in the two last inequalities points out that there exists a range of 

transitional values where Eq. (3) has marginal applicability.  In some cases, a weighting factor may be also used to 

address specific structural properties. The factor “1/2” in Eq. (3) depends on the end conditions [15]. Here, the NT 

ends are simply supported. For the fixed ends, the critical strain is 4 times larger.  Also, the moment of inertia, I = 

πR3h, the area, A = 2πRh, Young’s modulus and the mechanical stress are not explicitly used in Eq. (3), in contrast 

to the equation in Ref. [15]. Molecular dynamics (MD) simulations have confirmed a similar relation for a particular 

case of NT geometry [3].   

Under compression, long NTs (class II) have the global deformation mode similar to that of nanometer-scale 

beams (class III, [8, 9]), because of their column-like structural properties associated with the high aspect ratios.  

However, the wall thickness effects reduce the critical strain by a half (see factor “1/2” in Eq. (3)).  An initial 

bending would further decrease the value of the critical strain.  The long NT shells are not as sensitive to 
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imperfections in the wall thickness as the NT shells in class Ia.  However, the aforementioned ambiguities in the 

values of NT lengths and radii at the nanometer scale may also introduce some variations into the buckling 

predictions.   

Eq. (3) also provides a structure-property relationship that connects the critical buckling strain or the critical 

end-displacement to the structure of long NTs, for which the aspect ratio is such that LNT/dNT > 10.  Note that Eq. (3) 

also involves one non-dimensional quantity, RNT/LNT, which is a key non-dimensional parameter that affects the 

buckling behavior of NT shells.  As a result, NTs having the same values of nondimensional ratio RNT/LNT must have 

identical critical strain and buckling modes, even if the individual parameters RNT and LNT are different.  As 

mentioned before, this statement is also a mechanical law of geometric similitude for long NTs of the class II [8, 9], 

and is an extension of the laws of similitude from continuum mechanics.  The buckling deformation of NTs 

described by Eq. (3) is identical to the buckling behavior of long NT beams. 

 

4.3. Bending of nanotube shells.  Bending is one of the dominant deformation modes of NT-based scanning 

probes.  The effective bending modulus, Eeff, of a thick NT shell can be estimated by a formula [15]: 
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where EC is the effective Young’s modulus of the carbon lattice [10].  Bending of thin shell-like structures is 

sensitive to the local curvature and other geometric parameters.  For a thin cylindrical shell under bending loads, one 

side is compressed before buckling occurs at the local critical curvature, κcr.  Then the local strain, εcr = κcr RNT, can 

be estimated by the Eq. (2) if the inequality hNT/RNT < 1/20 is satisfied.  As a result, the critical curvature, κcr, is such 

that κcr ∝ (RNT)
-2.  This estimate is the same as that obtained by the MD simulation [3].  However, the key non-

dimensional parameter, hNT/RNT, is confirmed by the dimensional analysis, so the relation κcr ∝ (hNT/RNT)
2 is more 

appropriate. 

The approximate nature of continuum-based models is more evident in the analysis of buckling of NT shells 

caused by ambient pressure.  The lateral pressure on a NT exerted by the surrounding molecules of a polymer or 

other matrix is likely to be non-uniform and discrete in nature.  A shell-based model yields an estimate for the 

critical lateral pressure [15]: Pcr ∝ (hNT/RNT)
3.  Note that the bending stiffness of shells is proportional to (hNT)

3.  

Applicability of this approximation is restricted by both the thin-shell assumption, hNT/RNT < 1/20, and the concept of 

“pressure” that requires large lateral area (or large RNT).  However, the robustness of this estimate is underscored by 

the fact that the same dependence is predicted for buckling caused by a discrete lateral force [15].  Notice that the 

expressions presented here depend only on the key nondimensional parameter, hNT/RNT, which is indicative of a shell 

approximation. 

 

5. Limitations of continuum shell models. Equivalent-continuum models may be very useful for determining 

the global response and effective properties of nanotubes, at least for a limited range of geometric parameters.  
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However, it is essential to examine their ranges of validity and how the macroscopic assumptions are applied at the 

nanometer scale. 

 

5.1. Limitations of continuum shell representation.  In applying continuum shell theories to NTs, many of the 

same considerations that were examined for reticulated lattice structures must be addressed [11, 12].  Similar to 

other open lattice structures, NTs are characterized by the effective thickness.  Even for the most basic continuum 

shell theory, the bending stiffness is proportional to the cube of the wall thickness.  Thus, adequate representation of 

NT wall thickness is essential to the success of an equivalent-continuum model. 

Another issue that must be considered for NTs is the contribution of the geometry of the periodic hexagonal cell 

to the definition of the equivalent-continuum stiffnesses.  For example, studies on the homogenization of plate-like 

lattices made of beam-based cells indicate that equivalent stiffnesses are highly dependent on the cell geometry [10-

12].  In addition, the cell geometry is typically manifested in the equivalent-continuum model as membrane and 

flexural orthotropies.  As the n-fold symmetry (geometry and material composition) of a cell increases, the 

corresponding stiffnesses approach those for an isotropic material.   

Load introduction is another important consideration in continuum modeling of NTs.  Specifically, improper 

load introduction may precipitate local deformation that propagate through the NT, rendering equivalent-continuum 

models meaningless. 

 

5.2. Limitations of classical shell theory.  To examine possible length-scale limitations of macroscopic shell 

theories, all underlying continuum-based assumptions must be scrutinized.  For convenience, these assumptions as 

applied to NTs are listed here: 

S1) the equivalent shell for a NT molecule deforms elastically,  

S2) the length, LNT, and the width or the half-perimeter, πRNT, are much larger than the shell thickness, hNT, so that 

a two-dimensional theory sufficiently captures the dominant response, 

S3) the direction of the applied load remains constant during deformation (this essentially guaranties a 

conservative buckling problem), 

S4) the radius, RNT, and the cross-section of the NT shell does not vary along the length, 

S5) elastic strains and rotations of the shell are small compared to unity, or the gradients of displacements are 

infinitesimal, 

S6) material line elements that are straight and perpendicular to the shell reference surface remain that way 

during deformation and are inextensible (i.e., Kirchhoff's hypothesis). 

S7) displacements are small compared to the shell thickness, hNT, 

S8) through-the-thickness normal stresses are negligible compared to other elastic stresses. 

In classical continuum shell theory, all these assumptions are to be satisfied. In the context of NT mechanics, the 

range of validity of these different assumptions may be defined by using the geometric parameters of the NT 

molecular structure.  This approach provides a link between the structure of carbon NTs, their mechanical behavior, 

and the shell model for the NTs.   
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In this study, the analysis is restricted to elastic behavior of the NT shells (assumption (S1)).  Note that the 

bifurcation-buckling equations are linear [15].  The shell buckling theory that they come from is nonlinear [16], 

because the process of buckling is a nonlinear phenomenon.  Assumption (S2) allows the use of two-dimensional 

theory for capturing the dominant global response features and in deriving the elastic shell equations.  It is satisfied 

if the NT radius is such that hNT/RNT < 1/20.  Assumption (S3) restricts the direction of displacement of carbon atoms 

located near the NT edges.  Requirement (S4) about the constant radius and cross-sectional area leads to the constant 

moment of inertia. This requirement is a significant simplification since the NT structure is similar to the open 

lattice-type structures having many periodic cells.  Note that assumptions (S3) and (S4) are not just shell 

assumptions, as they are used in the classical beam theory as well [8, 9]. 

Assumption (S5) implies that the shell cross-sections do not deform in their planes, instead, they remain 

perpendicular to the original image of the shell reference surface during axial deformation as required by assumption 

(S6).  Kirchhoff’s hypothesis (S6) can be linked to the elastic constitutive relation.  To restrict stresses according to 

assumption (S8) is problematic for NTs of small radii.  These stresses are noticeable for the NT diameters in the 

range dNT < 1 nm [4], however, their magnitude diminishes as the diameters of NTs increase.  These curvature-

generated internal stresses set a lower limit on NT radius as far as the applicability of the thin-shell model is 

concerned. 

 

5.3. Limitations of Donnell’s equations.  Selection of a set of shell buckling equations must be made with 

care, after an acceptable loading procedure has been developed.  Donnell’s shell equations have been used for NT 

buckling [7], however, it should be pointed out that these equations are more applicable to calculating linear-

bifurcation points for cylinders that have more than two circumferential waves in the buckling pattern.  Thus, 

Donnell’s equations [16] do not predict the column-like buckling mode and would lead to errors if used for the 

analysis of long NTs.  For instance, the limiting equation, Eq. (3), for critical strains cannot be achieved.  To get the 

global column-buckling mode for long cylinders, a set of equations such as Flugge’s equations must be used [16].   

For both sets of bifurcation-buckling equations, it is important to note that the bifurcation (buckling) modes that 

are predicted are not the deformation mode exhibited by the buckled shell after the transient dynamic response of 

buckling has attenuated.  The mode that is observed is the stable postbuckling mode.  The bifurcation mode is 

unstable and is one of the configurations that the shell passes through on its way to the stable postbuckling 

configuration. This behavior is signified by the unstable nature of the bifurcation point.  Thus, one must be cautious 

about drawing conclusions about the behavior of nanotubes from bifurcation buckling modes. 

 

5.4. Nanotube buckling and characterization.  The shell-like buckling of a NT has been used as a means for 

determining properties such as the axial stiffness or the effective elastic modulus of a nanotube [3].  Several 

considerations must be taken into account when using this technique in order to avoid significant errors in the 

calculated results.  First, buckling loads of circular cylindrical shells are known to be highly sensitive to 

imperfections, such as initial geometric imperfections in the form of wall undulations, for some loading conditions.  

A detailed account of the effects of various imperfections on the buckling of compression loaded cylindrical shells is 

found in Ref. [18].   
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For uniform-compression-loaded cylinders, this sensitivity is manifested by unstable, symmetric bifurcation 

behavior with a multiplicity of eigenvalues that have the same numerical value.  The multiplicity of eigenvalues 

corresponds to the presence of several unstable equilibrium branches that intersect the equilibrium path of the 

unbuckled shell.  Moreover, the multiplicity of eigenvalues is an artifice of the high degree of axial symmetry 

exhibited by additional factors such as: 1) the geometry of the perfect shell, 2) the material composition, and 3) the 

loading and support conditions.  The common intersection of the multiple unstable postbuckling equilibrium paths is 

manifested physically for a geometrically imperfect shell by the presence of a limit point of the equilibrium path 

with a magnitude that is usually much smaller than the magnitude of the corresponding bifurcation point.  

Differences between buckling loads obtained from bifurcation analyses for geometrically perfect shells and from 

nonlinear analyses of imperfect shells, which agree well with experiments, are known to be as large as 60%.  Thus, 

mechanical properties that are based on calculated bifurcation buckling loads may be substantially in error. 

Second, for other loading conditions such as torsion, the imperfection sensitivity of a circular cylinder may be 

much less severe than that exhibited by the corresponding compression-loaded shell.  This reduced sensitivity results 

from the fact that for torsion loading, the shell experiences zones of diagonal tension incipient to buckling and is not 

dominated by compressive stresses.  For a loading such as pure bending, a reduction in imperfection sensitivity 

occurs because of the absence of axial symmetry and the fact that the shell is again not dominated by compressive 

stresses.  This lack of symmetry is typically manifested mathematically by distinct bifurcation points or eigenvalues 

(no multiple path intersections).  However, modal interactions that lead to imperfection sensitivity may occur for 

cases in which the distinct eigenvalues are nearly equal.  Altogether, these observations suggest that nanotube 

loading conditions that are not compression dominated may yield better measures of mechanical properties. 

 

5.5. A role of the structural-response scale.  Guidelines for the range of validity of a given continuum model 

must be also established with respect to the characteristics of the global mechanical response.  To define the range of 

validity of shell theories, for isotropic-material bodies, the parameter h/l is used [17], where h is the nominal or 

maximum shell thickness and l is the characteristic dimension of the expected shell response.  For example, l could 

be the wavelength of a buckling or vibration mode.  It may also be taken as the minimum radius of curvature of the 

two-dimensional shell surface, which implies a relatively large wavelength response.  As a result, the role of the 

ratio h/l is similar, but not identical, to that of the thickness-to-radius ratio.  Consequently, a rough guideline for 

defining the applicability of classical thin-shell theory to structural-response problems is that h/l must be less than or 

equal to 1/20.  Naturally, this is similar to the requirement on the thickness-to-radius ratio.  As one might expect, for 

high-frequency buckling or vibration modes, classical thin-shell theory may be inadequate. 

As one might also expect, the need to analyze relatively thick isotropic and thin anisotropic shells arises in 

engineering applications.  For many of these cases, the guideline h/l ≤ 1/20 generally doesn’t apply and a more 

robust measure is needed to gage the applicability of thin-shell theory.  Even for thin anisotropic shells, a measure 

such as  (h/l)M ≤ 1/20 is needed, where M is a material-system weighting factor that accounts for how the relative 

stiffnesses of the material system affect the range of validity of thin-shell theory.  For all cases, when a measure like 

(h/l)M gets relatively large, a refined shell theory is very likely needed to get accurate predictions of the structural 

response.  This requirement for a refined theory can become even more important when the response desired is a 
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localized quantity like a stress or strain, as compared to a global quantity like a buckling load or a fundamental 

vibration frequency.  

 

5.6. Other important shell parameters. Classical thin-shell theory suggests that there is another important 

parameter, which is useful for classifying the global mechanical behavior of NTs, besides the length-to-radius ratio 

LNT/RNT, and the thickness-to-radius ratio, hNT/RNT. That is, the Batdorf Z parameter: Z ~ L2/(Rh), or Z ~ (L/R)2(R/h) 

[19].  This parameter is proportional to the product of the aforementioned key non-dimensional parameters.  The 

derivation of the Batdorf Z parameter is based on a dimensional analysis of Donnell’s simplified equations [16] for 

buckling of thin-walled circular cylindrical shells. This parameter can be also used to characterize the influence of 

geometry on global buckling behavior of compression-loaded circular cylindrical shells.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. A model applicability map (MAM) with the ranges of values for non-dimensional geometric parameters 

that define NT classes and indicate the limits in the applicability of the thin-shell model for NTs. 

 

5.7.  A model applicability map.  The aforementioned analysis can be used to construct an applicability map 

for thin-shell models for the classes Ia and II of carbon NTs (Fig. 3). These classes of NTs are defined by 

dimensional restrictions on NT geometric parameters, which are formulated with inequalities that allow one to 

consider wide ranges of numerical values for the NT parameters.  Ranges of values for the inverse of aspect ratio, 

LNT/dNT, and the normalized radius, RNT/a, are marked for each class of NTs. The Lmin-line is based on the 

homogenization criteria LNT/a > 10.  The model applicability map shown in Fig. 4 provides guidance for MD 

simulations and experiments, for possible size effects in the thin-shell model that may be used for data reduction. 

The descriptive name of each NT class indicates the structural properties of NTs as well as the potential 

continuum models that can be used to predict their global mechanical behavior. That is, NT shells behave like either 

thin shells or thick shells depending on the thickness-to-radius ratio, hNT/RNT.  The long NTs (class II) have structural 
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behavior that is similar to the behavior of columns.  The NT beams deform like macroscopic beams. As a result, the 

map in Fig. 4 can be used to help find out what basic models are appropriate to describe the overall mechanical 

behavior of NTs in a particular class.  The applicability map (Fig. 4) also indicates that simple shell models may be 

ineffective for the parameters along the limiting lines on this map.  For example, micropolar effects [12] may be 

significant along the Lmin-line where higher-order theories may be required.  

 

6. Summary and discussion.  The structure-property relationships that relate the critical strains to NT 

structure have been examined and four broad classes of carbon NTs have been identified. These classes include thin 

and thick NT shells, high aspect ratio NTs, and NT beams.  The importance of classifying the types of NT structures 

has become apparent when the shell-like buckling of NTs was investigated.  In each class, NTs have unique 

buckling behavior.  The scaling analysis is used to identify the key parameters that control the buckling behavior of 

each class of NTs.  It has been shown that NTs having the same values of non-dimensional ratios (hNT/RNT for NT 

shells and LNT/RNT for long NTs) must have identical critical strain and buckling modes even if the individual 

parameters are different.  This constitutes the scaling laws of geometric similitude.   

Nano-scale effects and other key conclusions are summarized here as follows: 

1) there are variations in the estimates of the effective thickness of carbon nanotubes; 

2) the nanotube radius is uniquely defined only when the reference shell-surface is used; 

3) the value of nanotube length is subject to the end-cap-effects; 

4) the axial strain of a nanotube is easier to define than its stresses; 

5) displacements on the ends of NTs are easier to implement than tractions as boundary conditions; 

6) the hyperelastic behavior of a nanotube extends the typical 2% limit for the elastic strain of solids; 

7) carbon nanotubes of small radii behave as beams;  

8) a homogenization criterion (LNT/a1 > 10) is required;  

9) the moment of inertia is a dependent parameter in the buckling formulae for nanotubes; 

A model applicability map for the four classes of NTs is constructed to link NT behavior to specific equivalent-

continuum models that can be used for data reduction and NT probe designs.  The approximate nature of the 

analysis may provide potential sources of errors in the characterization of NT behavior and mechanical properties.  

For instance, the bending stiffness of shells is highly sensitive to the thickness, hNT, and its variations.  Its value is 

proportional to (hNT)
3. As a result, the compression-loaded cylindrical structures are very sensitive to small deviations 

in their wall-thickness (they can be less than one wall-thickness) and global properties that are calculated by using 

buckling loads could be in error of as much as 60%.   

 

7. Concluding remarks.  Issues that should be addressed when using an equivalent-continuum model to 

represent the global mechanical behavior of a carbon nanotube have been examined in the present study, in detail. In 

addition, applicability criteria have been discussed, fundamental parameters have been identified, and a means for 

classifying nanotubes has been presented.  Moreover, four broad classes of carbon nanotubes have been identified 

that include thin and thick shell-like structures of moderate aspect ratio, high-aspect-ratio shell-like structures, and 
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beam-like structures. Additionally, a parametric map that links the four classes of nanotubes with the specific types 

of continuum models has been presented. 

The buckling behavior of carbon nanotubes has also been a primary focus of the present study. Structure-

property relationships that relate the critical strains to the nanotube structure have been established that apply to the 

three broad classes of carbon nanotubes defined herein.  For each nanotube class, a unique buckling behavior has 

been identified and a scaling analysis was used to identify the fundamental non-dimensional parameters that control 

the buckling behavior for each nanotube class. Moreover, the corresponding scaling laws of geometric similitude 

have been described.  For nanotubes with the same values of the non-dimensional parameters, it has been shown that 

they must have identical critical strain and buckling modes, even if the individual structural features are different.  

As a result, the analysis presented herein may help to reduce the number of molecular dynamics simulations that are 

needed to describe a whole class of NTs.         
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